
How to build a GopherPupDon
GilbertJanuary 1995email:
gopherpup@bio.indiana.eduGo
pherPup is an Internet Gopher+
client with extensions to (a)

display rich text documents,
including pictures, and(b)

allow network hypertext links
inside documents it
displaysThis document includes
discussion of i the Gopher+
protocol extentions used
between GopherPup and
gopher+ serversiihow to create
your own gopherpup hyper-
rich-text documentsiii Gopher+

server modifications to support
GopherPupiv suggestions on
how to add hypertext to other
gopher+ clientsv GopherPup
source code and how to build
itvi Current bugs and problems
with GopherPupvii why not use
Mosaic/WWW instead of
extending Gopher+ protocol?I.
Gopher+ Protocol Extensions
for HypertextThe basic protocol
extensions used in GopherPup
were outlined in a Usenet article
in November 1993 <usenet
ref>, available as
<gopher+link>. The idea is to

include network hypertext
capabilities in the gopher+
protocol as simply as possible.
For that, I chose to use the
currently defined gopher-menu
and gopher+-menu data types.
These data types, when
included as a block extension
+MENU, can be associated
with any document served by a
gopher+ server. In order to
place specific link items within
a document, another set of
block extensions is needed,
which are associated with each
item in a +MENU block. These

placing extensions I’ve called
+MENUSTRING,
+MENURECT,
+MENUBYTES, and others
may be included as seems
important. Another advantage
of this method is that these
gopher+menu data can be save
to local disk files associated
with a document, where users
can access them in the same
way as from a remote
server.Here is the general
scheme of a client-server
transaction that includes
+MENU data. Client connects

to server and queries for a
gopher-menu or gopher+-menu.
Server responds with requested
data. If gopher+-menu data is
returned, the server will send
any +MENU block extensions
associated with any of its
documents. If gopher-menu is
returned, no +MENU data is
returned, and it is the client’s
responsibility to ask for more
information (“!”) on an item to
see if it has any +MENU
extensions.The format that the
server sends gopher+-menu data
including +MENU blocks is as

follows (the bars indicate tab
characters):+-1+INFO: 0MainDoc1 0/Some/Path/0MainDoc1 my.host.edu

70 ++ADMIN: Admin: blah blah+VIEWS:

application/rtf En_US: <12k>

text/plain En_US <8k>

+MENU:+INFO: 0LinkDoc1 0/Some/Path/LinkDoc1 my.host.edu 70 +
+MENUSTRING: “locate at this text in MainDoc1”+INFO: 1LinkMenu1 1/Some/Path/LinkMenu1
my.host.edu 70 + +MENUSTRING: “locate at this other text in MainDoc1”+INFO:

7LinkQuery 7Some/Path/LinkQuery my.host.edu 70 + +MENUSTRING: “locate at this
even different text in MainDoc1” +QUERYSTRING: “search gopher index with this string”+INFO:
1LinkMenu2 1/Some/Path/LinkMenu2 my.host.edu 70 + +MENUSTRING: “locate
somewhere else in MainDoc1”+INFO: 0Doc2 0/Some/Path/Doc2 my.host.edu 70 +
+ADMIN: Admin: blah blah+VIEWS: application/rtf En_US: <12k> text/plain En_US
<8k>+MENU:+INFO: 0LinkDoc1 0/Some/Path/LinkDoc1 my.host.edu 70 +

+MENUSTRING: “locate at etc in MainDoc1”+INFO: 1LinkMenu1 1/Some/Path/LinkMenu1
my.host.edu 70 + +MENUSTRING: “locate at etc in MainDoc1”+INFO: 0LinkDoc2
0/Some/Path/LinkDoc2 my.host.edu 70 ++INFO: 1LinkMenu2 1/Some/Path/LinkMenu2
my.host.edu 70 ++INFO: 0Doc3 0/Some/Path/Doc3 my.host.edu 70 +[et

cetera ...]The basic idea here is that any document can have an associated gopher+-menu structure. The current
U.Minnesota gopherd server can easily include this data by means of its block extensions method. Data in the
format of a “.cache” or “.cache+” file can be copied to a a file to be associated with a document (e.g.,
MainDoc1.gmenu, associated with MainDoc1), or one can create such a .gmenu document by hand. The document
maintainer can then edit that file and put in +MENUSTRING and related locating extensions. This will produce a
MainDoc1.gmenu file looking like this, for instance:+INFO: 0LinkDoc1 0/Some/Path/LinkDoc1

my.host.edu 70 ++MENUSTRING: “locate at this text in MainDoc1”+INFO: 1LinkMenu1
1/Some/Path/LinkMenu1 my.host.edu 70 ++MENUSTRING: “locate at this other text in

MainDoc1”+INFO: 7LinkQuery 7Some/Path/LinkQuery my.host.edu 70 ++MENUSTRING:
“locate at this even different text in MainDoc1”+QUERYSTRING: “search gopher index with this string”+INFO:
1LinkMenu2 1/Some/Path/LinkMenu2 my.host.edu 70 ++MENUSTRING: “locate at etc in
MainDoc1”The gopherd server should have its configuration file modified to include the block extension type
“MENU”, with some suitable filename suffix (e.g., .gmenu). On my server, I have a /usr/local/etc/gopherd.conf that
has this entry: blockext: .gmenu MENUThen when gopherd serves out menu information, it will provide it in the
above format with any MENU blocks right-shifted by one space.

The +QUERYSTRING is another extension which can be used in conjunction with the +MENU blocks. Its function
is to provide a given string that will be used to search a gopher Index database (type 7). That way, a document can
easily include hypertext references to data in searchable databases. More about this later.When sent to a client, the
client can use the same general method of parsing the +MENU block as it uses to parse standard gopher-menu and
gopher+-menu data. Then it parses the +MENUSTRING and related placement extenstions, using that information
to place the +INFO link at a particular word, phrase or position in the document. The client software can highlight
these hotspots in various ways (underline, color, or in a character-mode client, perhaps as extra symbols in the text
like [1]), so the person can see which areas have hypertext links.II. Making Hypertext documents for serving to
GopherPupGopherPup now includes the ability to display documents that are in Microsoft standard Rich-Text-
Format (RTF). This format was chosen because it is an existing, widely available standard for storing fully
formatted documents (including font, paragraph and document styling and pictures). It is suitable for exchange of
scientific documents, as it handles symbol fonts, super and subscripting, and the other formatting characteristics
needed in most scientific and scholarly documents. Also importantly, the most commonly used wordprocessors on
the common computing platforms (Macintosh and MS-DOS/MS-Windows) will read and write RTF format. The
primary step in creating network hypertext documents is then as simple as writing the document in your
wordprocessor, and saving it in RTF format (see the “Save As” or similar option in your wordprocessor for saving in
this format). The next step is to associate network links with words or images in your document. This current
release of GopherPup is sparse in its support for associating link data with document parts. Currently this involves
(a) creating a separate text file that has gopher+-menu data, (b) inserting +MENUSTRING statements with each
+INFO statement. Alternately, if you save a hypertext gopher document retrieved thru gopherpup, it will create a
“.go4” gopher+-menu document including the +MENUSTRING statements.II.a) The GopherPup .go4 data
file.GopherPup will now look for link data associated with any document it opens from your local disk drives. The
standard way to open a local disk file in GopherPup is to choose the File/Open command, and use the system-
specific file chooser to select a document to view. When you make such a selection, e.g., MyThesis.rtf or
MyThesis.text, the program now will look for an associated file with the suffix “.go4”, e.g., MyThesis.go4. The
program looks in such a file for gopher+-menu data and if found, will use it to mark hypertext links in the selected
document. You can create an initial .go4 data file by saving gopher menu windows from GopherPup (use the
File/Save menu when a gopher menu window is the active window). Such a file can be edited with a standard text
editor application. It consists of lines such as described above that are the gopher+-menu data:

+INFO: 0LinkDoc1 0/Some/Path/LinkDoc1 my.host.edu 70 ++INFO: 1LinkMenu1
1/Some/Path/LinkMenu1 my.host.edu 70 ++INFO: 7LinkQuery 7Some/Path/LinkQuery
my.host.edu 70 ++INFO: 1LinkMenu2 1/Some/Path/LinkMenu2 my.host.edu 70
+Protocols other than Gopher are supported in this format with the addition of +URL: lines. Currently

GopherPup requires a +INFO: line for each item, then additional Gopher+ statements will add to and modify that.
This is an example:+INFO: 0ItemTitle any/path any.host 0+URL: http://real.host/real/path/hereII.b) Linking
with +MENUSTRING statementsCurrently only the +MENUSTRING: “some word or phrase” method of linking a
gopher item to a document location is supported in GopherPup. You need to edit the gopher+-menu “.go4” file you
created above with a text editor and insert these statements, one following each “+INFO” statement. The syntax of
this statement is+MENUSTRING: word+MENUSTRING: “a phrase in double-quotes”+MENUSTRING: ‘a phrase
in single quotes’GopherPup will search a document and mark all matches to a given +MENUSTRING as links to the
associated +INFO gopher item. II.c) Planned MENU locating statementsFuture versions of gopherpup should
expand on these capabilities. It is also hoped that a later version of gopherpup will included means to directly link
gopher items to a displayed document, bypassing need to use a text editor. Suggested locating statements are
+MENUSTRING: "some string" repeat-value used to locate a network link at a string in a text document. A
phrase with embedded spaces should be enclosed in quote (‘) or double quote (“) characters. An optional repeat-
value specifies which occurence of the string to match, from the top of the text. The repeat value is not currently
implemented in gopherpup -- all instances of the menustring are matched.+MENUSTRING: "bob was here"
3+MENULINE: start-paragraph start-char stop-paragraph stop-char specifies the item's location as a line number
and character range in a text document. Start-paragraph indexes a paragraph, from 0 at top, and 'start-char' indexes
a character within that line. Likewise Stop-paragraph and stop-char indicate the end of the index. +MENULINE:
100 500 100 515+MENURECT: left top right bottom specifies the item's pixel location rectangle on a
graphics document.+MENURECT: 300 0 400 100+MENULINERECT: start-paragraph start-char left top right
bottom This is a combinary of +menuline and +menurect, to index a rectangle within a paragraph.
+MENULINERECT: 100 500 300 0 400 100+MENUBYTES: startbyte stopbyte specifies the item's
location as a byte range in a text document. If 'stopbyte' is missing, only the 'startbyte' location is indexed for the
item location.

+MENUBYTES: 100 500+ISMAP: Indicates the item is a queryable graphic map, and x-y coordinates of
mouse clicks will be sent to the item server.

II.d) NetDoc formats -- Gopher links combined with document dataAs an alternative to having a separate .go4 data
file of link statements for each document, GopherPup understands a compount document type where the link
statements are prepended to the other data. This method allows documents with any kind of data that GopherPup
can display, including binary formats such as PICT and GIF, to contain network links. They are typed as
NetDoc/Text, NetDoc/RTF, NetDoc/PICT, NetDoc/GIF, et cetera. The format of these NetDoc types is to start with
the line+MENU:followed by as many Gopher+ link statements as described above as needed, then the line
+DATA:is a key that the document data follows to the end of the file.Here is an example NetDoc header+MENU:
+info: 1GopherPup home 1/IUBio-Software+Data/util/gopher/gopherpup ftp.bio.indiana.edu 70

+ +menustring: ftp.bio.indiana.edu:/util/gopher/gopherpup +comment: +comment: To read this with a
standard wordprocessor, strip out the lines down thru +comment: the "+DATA:" line, so that the first line starts with
"{ \ rtf1" +comment: +info: 1DCLAP home 1/IUBio-Software+Data/util/dclap ftp.bio.indiana.edu 70

+ +menustring: ftp.bio.indiana.edu:/util/dclap +info: 1IUBio Archive ftp.bio.indiana.edu
70 + +menustring: "IUBio Biology Archive" +info: 7GenBank sequence search
7/.indices/genbank ftp.bio.indiana.edu 70 + +menustring: "fetch a sequence entry from

Genbank" +info: 1RTF Info 1/IUBio-Software+Data/util/rtf ftp.bio.indiana.edu 70 +
+menustring: "Rich Text Format" +info: 1RTF (Rich Text Format) utilities 1/RTF ftp.primate.wisc.edu

70 + +menustring: ftp.primate.wisc.edu:/pub/RTF +info: 0Go+hypertext-method 0/IUBio-
Software+Data/util/gopher/go+menu-article.txt ftp.bio.indiana.edu 70 + +menustring: "network
hypertext links" +comment: new gopherpup "mailto" kind 'm' +info: mGopherPup bug report

GopherPup@Bio.Indiana.Edu localhost 0 +menustring: GopherPup@Bio.Indiana.Edu +info:
1NCBI Gopher ncbi.nlm.nih.gov 70 +menustring: "National Center for Biotechnology Information"
+info: 1ncbi_tools 1/toolbox/ncbi_tools ncbi.nlm.nih.gov 70 +menustring: ncbi.nlm.nih.gov:/toolbox
+info: 1Gopher help from U.Minnesota (USA) gopher.micro.umn.edu 70 + +menustring:
gopher.micro.umn.edu +comment:+DATA:{\rtf1\mac\deff2 {\fonttbl{\f0\fswiss Chicago;}{\f2\froman New York;}{\
f3\fswiss Geneva;}{\f4\fmodern Monaco;}{\f13\fnil Zapf Dingbats;}{\f14\fnil Bookman;}{\f16\fnil Palatino;}{\f18\
fnil Zapf Chancery;}{\f19\fnil Souvenir;}{\f20\froman Times;}

[... and more rtf data...]III. Gopher+ server modifications to support GopherPupAll of the current extensions to
GopherPup will work with the current gopher+ GopherD server from University of Minnesota, I believe. I use one
minor extension, but it isn’t essential. At this point, I haven’t tested other gopher+ servers, such as the Macintosh
one. The one extension I’ve added to server software for these methods, is to allow the combined MENU
information and document DATA to be built from two separate files, and sent as one chunk to the client. This
extention allows one to support both non-hypertext and hypertext formats from the same data files. For instance,
one set of documents at IUBio server is available in the following formats: image/pict, netdoc/pict, image/gif,
netdoc/gif, and text/html. The two pict forms use one data file, and the netdoc form is created by prepending a
+MENU: block (as in §II.d above). The other three forms are created from one gif file and the same menu block
(for netdoc/gif) or with an HTML wrapper (for text/html).IV. Suggestions for adding hypertext support to other
gopher+ clientsThe protocol extentions that are outlined here, and embodied in the GopherPup client, are readily
transferable to other gopher+ clients. The basic data here is the same gopher+-menu data already parsed by these
clients. A gopher+ server should need no modification to send MENU data associated with a document, if it follows
the U.Minnesota model of block extensions. It is my intension, and suggestion for others, to provide at least both
plain text and Rich Text Format versions of documents for network information servers, since it is usually trivial to
produce both forms from a wordprocessor. Thus it isn’t necessary for other clients to support RTF display (which is
the hard part here -- it took me rougly one day to add just the hypertext portion to my gopher client). Other clients
might also care to support other document formats. This method of MENU extensions can be applied to various text
and graphics formats.For a client to support MENU hypertext links it basically needs to add recognition of the
+MENU: block extention, and extension locator statements like +MENUSTRING:. For a graphics mode client, this
would involve highlighting the located strings in a document on display, and responding to user interactions (mouse
clicks) with the highlighted item by fetching it from the server, basically in the same way as for gopher items that
are displayed and selected from a menu.For character-mode client, it might be easiest to insert markers into a display
document to correspond to highlighting in a graphics client. If the document text were Please match this word,
and then match this second word, then formats such as Please match this word{a}, and then match this
second word{b}, or Please match this word[1], and then match this second word[2], would display
easily, and the client could respond to typing of letters or numbers as selection events for the linked items.V.
GopherPup source code and how to build itSource code for GopherPup is freely available for non-commercial
distribution and use, as are program executables for the major platforms available to the author. It may be modified
and enhanced for those who wish to. The source code is available at <ftp://iubio.bio.indiana.edu:/util/dclap/src/>
with associated source code in /util/dclap/from-ncbi/, documents in /util/dclap/docs/, and program executables in
/util/dclap/apps/.An interesting feature of the GopherPup software is that it is written based on a cross-platform
development library. This means that “one-size-fits-all”, or at least it tries to. Additions and changes to the program
are readily available on the common computing platforms of Macintosh, MS Windows and X/Motif Windows.The
cross platform development library includes an ANSI-C interface to Macintosh, MS-Windows, and X/Motif
Windows graphic and system environments. The C library is called NCBI Toolkit, with VIBRANT the graphic user
interface portion. These parts are written by biocomputing scientists at the National Center for Biotechnology
Information

(NCBI). The remainder of the framework for GopherPup is a C++ object oriented, class application library
(DCLAP), which is still fairly young. It is based loosely on the Apple Computer MacApp development library (the
parent of GopherPup, GopherApp was written to MacApp). VI. Current bugs and undeveloped features of
GopherPupGeneral: – RTF and HTML, and in general the rich-text display, need much bug chasing. – HTML
Forms are not supported yet (a first hack at it is in progress). – Memory management is improved but still needs
much work -- documents are not flushed & loaded as sensibly as they should be. Mac: – seems generally stable,
but not completelyXMotif: – somewhat usable, though it still tends to crash. – no printing. This lack is
fundamental to the XWindow support of Vibrant/DCLAP.MS-Windows: – freezes fairly frequently still.
When not frozen, all the features are there. The 32 bit version seems much more stable -- several of the 16bit
version crashes are known due to the small word size of that system for memory allocations, etc. [more bugs are
known, just not documented here...]VII. Why not just use Mosaic?Internet Gopher and the network information
systems that goes under names of WWW, the Web, HTTP and HTML are both capable of being good network
information clients, and in very similar manners. Many of the features that were pioneered in gopher are now being
added to WWW/Mosaic client-servers. Many of the same problems are now being addressed. My opinion is that
Gopher has good features that should not be lost sight of due to a desire for hypertext, and a pretty (inter)face.The
hypertext markup language (HTML) has advantages and disadvantages over the method discussed here. One basic
difference is that HTML is an in-line markup language, where hypertext links are inserted in the document. The
form described here doesn’t change documents themselves, but adds a secondary data file, or is appended at the start
of the data. In some cases this nicer, as it leaves the original document in its original form, without confusing the
text with network link codes. GopherPup has been developed to allow translators to display various document
formats, and as well to permit adding network links to any of these formats, whether they are simple text or some
binary image format.

The HTML document format as implemented in Mosaic and other WWW browsers does not provide enough support
for the formatting features needed for scientific documents. Symbol and other fonts, super and subscripts, various
formatting capabilities that any common wordprocessor can display are essential for electronic publication of
scientific documents. Also, to get wordprocessing documents into HTML format involves various difficulties. The
RTF format chosen for GopherPup is better suited to display of scholarly articles, and has the great benefit of being
readily produced by many or most of the commonly used wordprocessing programs. As well, GopherPup has the
markup features needed to allow you to very simply add network links to any part of a displayed document, by
selecting words or portions of the display and dragging a network link item to that selection.The RTF support also
includes support of embedded pictures, including both vector and bitmap forms. Vector pictures are not supported in
Mosaic/www, but are very useful for scientific data (frequently graphs) both because they are independent of
resolution of the display/output device, and also because they can be re-edited to different sizes or components can
be changed easily. In one example of genetic map drawings, I have compared the same maps in formats suitable for
Mosaic browsers (GIF) and for GopherPup (PICT). The low-weight, high-resolution vector map wins hands down
any speed contests, at about 5 times faster in fetching and displaying the same map, making it much more suitable to
set up interactive graphic browsing services with GopherPup. The hypertext transport protocol (HTTP) is essentially
the same in functionality to the Internet Gopher protocol, it just works with different codes. Since gopher servers
can also server HTML documents if those are preferred, there seems no compelling reason to run an HTTP server.
Gopher already has mature support for client-server handling of multiple-format documents (Gopher+ VIEWS).
This allows for instance a server to provide both a fancy, picture-rich document and a simple, plain text one that can
provide the same basic information. But this choice of formats lets gopher serve a wider range of client and network
transport capabilities.Mosaic and other so-called web browsers tend to be “kitchen-sink” clients. They try to speak
many network protocols, but are masters only of HTTP/HTML. In part this means that people using these browsers
get a poor impression of methods other than HTTP/HTML, because the browser only poorly support other methods.
This is basically why I avoid using the terms “web” and “WWW”. The advocates of HTML/HTTP browsers are
claiming more than they deliver. Gopher clients tend to concentrate on mastering one protocol, and rely on
information servers to provide gateways to alternate protocols if desired. The HTML/HTTP developers have long
talked about the “standard” that they developed. It currently looks like it will be very difficult for anyone to extend
or improve that method, as they have a committee in charge of it. In my estimation, standards are not born over
night. Where standard make sense, existing ones should be employed before inventing a new one. Where new
methods are needed, they should be developed and tested before calling them a standard. That is why I’ve (a)
concentrated on using existing formats like RTF and PICT that are already in wide use for document display, and (b)
extended and experimented with the flexible Gopher+ protocol to get it to do useful things, rather than try to do such
with the restricted HTTP/HTML protocols.Both Internet Gopher and WWW are still evolving and changing rapidly.
It may well be that they converge on some set of features that all find useful. GopherPup is one step to

providing a complex client that supports the important information protocols. I’ve hoped with GopherPup
extentions to amend the parts of Gopher that many people find advantageous in Mosaic, and perhaps provide in
some small ways a better network client for some uses.The evolving GopherPup now supports local gophering --
browsing and (soon) searching of local data with the same simple methods that apply to remote services. With this
addition it will be feasible for information providers to offer both network services and CDROM based information
disks relying on one set of data and client/user-interface.

